
THE PPM ENVIRONMENT MANAGER

Stuart Sechrest
Computer Science Division

University of California at Berkeley
Berkeley, California 94720

An environment is a set of name-value bindings, maintained for a particular user, that are

provided to a process at runtime. This can provide a great deal of flexibility in tailoring the

behavior of programs to a particular user's preferences. It can also serve as a simple means of in

terprocess communication. To be useful, however, the environment must take into account the

natural structure of a user's work. Groups of cooperating processes form jobs and should share

certain bindings. At the same time. processes in different jobs running on the same machine

should share other bindings. A Oat name space for bindings does not provide sufficient structure

to handle these overlapping sets of shared bindings. The PPM Environment Manager provides an

environment with a variety of contexts, allowing bindings to be, for example, machine-specific or

application-specific. The environment, however, remains simple to use. The PPM Environment

Manager was designed to support multiprocess programs, distributed programs, and programs

offloaded in a network of machines. A prototype has been implemented on top of UNIX 4.3BSD.

1. Environments

Information that is useful to or necessary for a running program may not be determinable

when the program is written, compiled, and linked. For example, a program may need to know

• the login name of the user running the program

• the home directory of the user
• the desired time to wait for some response before giving up

• the address of a service
• the user's preferred font size for displayed output

One approach to providing this information at runtime is to bind a value to a logical name known

to a program and to have the program call a routine to evaluate this binding. Following this

approach, we would like to give each user fine-grained control over exactly the information pro-

vided to each program that he runs. We would like, at the same time, to make it easy for the user

This work was sponsored in pan by the Defense Advanced Research Projects Agency (DoD), ARPA Order No. 4871, moni

tored by the Naval Electronics Systems Command under conuact No. N00039-84-C-0089. Additional suppon was provided by illM.

The views and conclusions contained in this document are those of the author and should not be interpreted as representing official

policies, either expressed or implied, of the Defense Research Projects Agency, of rhe US Goverment, or of illM.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
OCT 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
The PPM Environment Manager

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
An environment is a set of name-value bindings, maintained for a particular user, that are provided to a
process at runtime. This can provide a great deal of flexibility in tailoring the behavior of programs to a
particular user’s preferences. It can also serve as a simple means of interprocess communication. To be
useful, however, the environment must take into account the natural structure of a user’s work. Groups of
cooperating processes form jobs and should share certain bindings. At the same time, processes in different
jobs running on the same machine should share other bindings. A flat name space for bindings does not
provide sufficient structure to handle these overlapping sets of shared bindings. The PPM Environment
Manager provides an environment with a variety of contexts, allowing bindings to be, for example,
machine-specific or application-specific. The environment, however, remains simple to use. The PPM
Environment Manager was designed to support multiprocess programs, distributed programs, and
programs offloaded in a network of machines. A prototype has been implemented on top of UNIX 4.3BSD.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

to provide this infonnation, and for application writers to take advantage of the flexibility that it

provides.

We call such a set of name-value bindings an environment. (We adopt the tenn from the

UNIX operating system.) An environment can serve three functions:

Information repository -- An environment provides a unifonn mechanism for supplying

infonnation to a program at runtime. This infonnation would otherwise have to be wired

into the program, supplied as command line arguments, read from a particular initialization

file, or supplied by some other ad hoc mechanism.

Point of indirection -- An environment can serve as a point of indirection in accessing

objects in global name spaces. For example, service addresses and file names can be placed

in the environment. A user might bind the address of his preferred print server to an

environment name. A printing program could evaluate this name to find the actual address

to send the output to. This flexibility can be useful both in testing new services and in

tailoring the services used by each user to an appropriate set of resources.

Means of communication -- If the bindings in the environment are shared, processes

without shared address spaces have a simple means of communicating. This can be used to

help set up other communication channels. It can also be used to update infonnation used

by programs, even infonnation that is not expected to change in the usual case, without

requiring every application writer to include apecial provisions for such updates.

The user should not, of course, have to set a binding for each process to which it is relevant

He should be able to bind a value to a name once for evaluation by a set of processes. The user

should have the ability, however, to set a binding to different values for different groups of

processes. Some infonnation, for example, may be machine specific, and should be seen only by

processes on a particular machine. Some infonnation is job specific, and should be seen only by

processes in a particular job. Some infonnation is application specific, and should be seen only

3

by processes running particular applications. The problem in constructing an environment suit

able for distributed computing is to provide this flexibility, without sacrificing simplicity and

convenience.

In this paper we describe the PPM Environment Manager, pan of the Personal Program

Manager, or PPM [13] (an earlier version of PPM is described in [4]). PPM provides a layer of

distributed program management services between applications and the underlying operating sys

tem (or systems). These services are used by application programs including such tools as com

mand interpreters supporting distributed computations and supporting login sessions where jobs

are shifted between machines to balance their loads. The PPM Environment Manager provides a

shared pool of name-value bindings for the processes of a particular user. The structure of the

environment's name space and the semantics for binding evaluation provides the flexibility

necessary for distributed programming, without making the environment difficult to use. Section

2 of this paper describes related work. Section 3 describes the design of the PPM Environment,

its name space and values. Section 4 discusses a prototype implementation, and Section 5 con

cludes.

2. Related Work

The term ''environment,·' we have said, is adopted from the UNIX operating system. The

standard UNIX command interpreters, or shells, that is the Bourne Shell [3], the C shell [7], and

the Kom Shell [8], support environments copied into each process's address space. These

environments can be used as information repositories, but the simple copying semantics make it

difficult to store information that is application specific or, in a distributed system, location

specific. Because each process holds separate copies of bindings, they cannot be used for com

munication.

4

An environment manager has been proposed for MACH [14] which allows bindings to be

shared. The environment manager is a separate server process that provides its clients with

access to a pool of bindings. Each process may share access to its parent's environment, be given

a copy of its parents environment, or be given an empty environment. The choice is the parent

process's. This does not allow a child process to change a binding for its parent unless the parent

allows for this possibility. There can be problems with this. Suppose that a shell process holds

its current working directory as an environment binding. (This can be useful if the shell is run

ning on a different machine from the one where it is starting jobs.) Rather than building a

''change working directory'' command into the shell, the working directory could be set in a

shared environment by a program run by the shell. The shell, however, would have to treat the

process running this command differently from other programs, which would have copies of the

shell's environment to insulated them from this very change.

It is possible for a process to acquire access to more than one scope in the MACH scheme.

Thompson suggests that this might allow a process to access either a local scope or a widely

shared global scope. As in UNIX, names in the MACH scheme are simple character strings.

Because the user may have access to more than one scope, the calls to set or evaluate bindings

require that the scope be explicitly specified. This mechanism allows access to multiple contexts,

but does not address the problems of organizing these multiple contexts so as to provide appropri

ate access to machine-specific or application-specific bindings. Distributed applications might

wish to share access to global information. However, a binding for something like host machine

name could not be placed in a context shared by processes on different machines; placing it in

private contexts, however, makes it difficult to maintain, since it cannot be allowed to be copied

across a machine boundary.

Some of the functionality desired for environments has been offered by system name

servers, such as Grapevine [1] [12] and the Cambridge Name Server [10], but without providing

the individual user control over the precise bindings seen be each process. System name servers

5

allow values to be bound to logical names, but the same bindings are generally seen by large sets

of processes. This is useful, for example, for publicizing· a server's address to a large number of

client's. It is not as useful, however, for allowing multiple instances of a client each to contact a

separate instance of a server. Such name servers are not useful for passing user specific informa

tion, such as a user's full name.

Cheriton and Mann's [5] name interpretation model for the V system has some of the

features of an environment and some of a system name server. In the V system, at the lowest

level, process identifiers are used as interprocess communication addresses. Because these

identifiers are not known until runtime, the kernel provides a mechanism for binding thread

identifiers to logical identifiers. A server, with a kernel call, can establish a binding between a

logical identifier and its process identifier. Clients wishing to find a server address evaluate the

binding with a kernel call. One of the parameters used in establishing a binding specifies the

''scope'' of the binding. The binding is either local to a particular machine, or remote, that is the

binding is seen only at other sites, or both, recognizing the importance in a distributed system of

providing bindings that are specific to a particular site.

Cheriton and Mann propose a higher level name resolution protocol that allows the uniform

handling of names for a wide variety of servers. A name is generally a string of ASCII charac

ters, that is divided into components. The components are parsed left to right and are generally

drawn from a hierarchical name space. The components are interpreted by a series of context

servers. Each context server may map a prefix of the name to a reference to another context

server. In this case, the remaining components of the name are forwarded to this new server and

name interpretation continues. The initial context server is replicated, one per user. Other con

text servers may be associated with specific services, such as file servers, are located by multi

casts. By starting all interpretations at a per-user context server, this mechanism allows names to

have bindings with user specific values. Cheriton and Mann do not discuss, however, how user

specific bindings should be handled, and, in particular the possibility of bindings that are even

6

more specific, such as per-job or per-process bindings.

3. The Design of the PPM Environment

3.1. Basic Concepts

A binding is a linkage in some context between a simple name and a value. A simple name

is a character string that is unambiguous within a contexL Ideally, a simple name used in a pro

gram would be a straightforward and meaningful string such as TIMEOUT or

SERVER_ ADDRESS. The context in which a simple name is evaluated may be identified impli

citly, as, for example, when there is only a single context for each user, or explicitly. Explicit

context references may use a separate naming scheme from the scheme for simple names, or the

two references may be integrated, as when the context is identified by a prefix added to the simple

name (for example, !AlBIC would refer to the simple name C in the context /AlB).

Bindings must somehow be set for a process to evaluate. Some bindings might be set

specifically for one process, but most will be provided as default settings to a number of

processes. There are, in general, two ways that this could come about. The bindings might lie in

a context shared among a number of processes, or bindings might be copied from an existing

context when new contexts are created. The latter possibility we will call inheritance. It is also

possible for these two schemes to be combined if a new context can inherit a reference to a bind

ing in a different context. For now we will focus on pure inheritance.

Copying bindings each time a new context is created is not the only way of implementing

inheritance. It can also be implemented by looking for a simple name in each of a chain of con

texts when evaluating a binding. The choice between these possibilities is not important at an

abstract level, but since the latter implementation is simpler to illustrate, we will assume that

implementation for now.

7

Inheritance allows the specialization of bindings without name conflicts. This is illustrated

in Figure 1. Processes P 1 and P2 see different values when they evaluate the simple name

TIMEOUT. If only a single shared context were available to the two processes, they could use

different values only by using different names. Process P 1 inherits its value, 30 sec, from the

superior context, while process P2 sees the value 20 sec set in the inferior context. Inheritance

allows changed bindings to be cleared rather than reset. By eliminating a context, all the bind-

ings it contains are eliminated. With a single shared context, temporary changes have to be expli-

citly undone.

If a new context is created for each process, every process will be able to have its own spe-

cialized bindings. But from what context ought a process's context inherit the bulk of its bind-

ings? One approach, taken by UNIX, is to copy bindings for a child process from the parent

process's context. This approach, however, is limiting, because the value set for the parent may

not be the appropriate default for the child. In Figure 1, for example, suppose that the superior

context belongs to a process PO, running on a machine called Gemini, that is (logically) parent to

TIMEOUT= 30 sec
HOST = Gemini

~
HOST= Virgo TIMEOUT= 20 sec

Figure 1 Inheritance allows bindings to be specialized without name conflicts.

8

both processes Pl and P2. Process PO's context contains the binding HOST= Gemini. Process

P2, running on Gemini, can inherit this binding. If process Pl is running on the machine Virgo,

rather than Gemini, the binding for HOST must be reset, rather than inherited. If Pl were to start

a child process on Gemini, the binding would have to be explicitly reset again, even though its

grandparent has the correct binding. This is unfortunate, because it requires that the parent pro

cess (or some other authority) know exactly which bindings need to be reset under various cir

cumstances.

There are other bases for inheritance than parentage; bindings might be inherited on the

basis of the machine on which they run, the application program they are running, the job to

which they belong. Rather than choosing a single basis for inheritance it is possible for a context

to have multiple independent lines of inheritance.

Multiple inheritance is useful when the applicability of properties to sets of objects is

predominantly, but not exclusively, hierarchical. The collections of processes in the same job, on

the same machine, and running the same program overlap, so any attempt to force these attributes

into a strict hierarchical organization would make setting bindings dependent upon an inferior

attribute cumbersome. The need for multiple inheritance arises in other areas, such as in the

design of object-oriented languages. Several of these languages, including Flavors [9],

Trellis/Owl [11] and CommonLoops [2] have introduced multiple inheritance into their method

(or function) inheritance scheme. In object-oriented languages, a class of objects is often a

refinement of a more general class, so the definitions of general operations are often inherited by

specialized subclasses. Sometimes, however, a class is a hybrid of two or more general classes.

In this case the new class inherits aspects of both general classes. Owl/frellis requires the pro

gram to explicitly resolve ambiguities that may arise when conflicting definitions are inherited.

Flavors and CommonLoops define a precedence among the ancestor classes for resolving

conflicting definitions. These same alternatives are available for resolving ambiguities in the

inheritance of bindings in an environment.

9

3.2. Inheritance in PPM

The PPM Environment allows a process to inherit bindings through multiple lines of inheri

tance (see Figure 2). The inheritance line on the left might contain machine-independent bind

ings, and the line on the right machine-dependent bindings. Each process has a precedence order

ing among its inheritance lines called an evaluation path. The contexts in Figure 2 are labeled in

precedence order for process Pl. PPM imposes a four-level hierarchical structure on a user's

work. The user's processes are part of a login session. The login session contains command ses

sions, the command sessions contain jobs and the jobs contain processes. Each inheritance line

contains four contexts, reflecting this structure. If two contexts within the same line of inheri

tance contain a binding for the same name, the process inherits the binding in the lower (more

specific) context.

The four-level context hierarchy allows bindings to be set for four different scopes within a

particular line of inheritance. The broadest scope, a login session, applies to all of the user's

processes. The next level, a command session, applies to processes that are started from the same

command interpreter, since a user may run jobs from several different windows, each with its

own state. The third level is a job, and the fourth a process. Facilities outside the PPM Environ

ment manager keep track of which process belongs to which job and which job belongs to which

command session, as well as assigning to jobs and command sessions unique (within the login

session) identifiers. The decision to limit jobs and command sessions to a single level each was

made for the sake of simplicity. The alternative would be to allow a job to contain layers of sub

jobs and command sessions to contain layers of subcommand sessions. Restricting jobs to a sim

ple structure has not proven to be a great limitation. Restricting command sessions to a single

level has shown drawbacks. In particular, it makes it more difficult to allow to be undone the

effects on the environment of some group of commands.

10

D H Login Session Level

1 l
c G Command Session Level

I I
B F Job Level

I I
A E Process Level

Evaluation Path: (A, E)

Figure 2 Multiple lines of inheritance

Different processes belonging to a single user will inherit bindings from overlapping sets of

contexts. The extent of the overlap is determined by their evaluation paths and their closeness in

the overall logical structure of the login session. For example, if processes PI and P2 were com

ponents of he same job lying on different machines, they might inherit bindings from contexts in

the pattern shown in Figure 3. Because they are on different machines, they will inherit indepen

dent sets of machine-dependent bindings. However, because they are in the same job, and hence

the same command session and login session, they will inherit bindings from overlapping sets of

machine-independent contexts.

11

D HPJ HP2

I I l
c GPJ GP2

I I I
B FPJ FP2

l I

API EPJ EP2

QL....-----:.u-~-~----1
-u '

Figure 3 Shared lines of inheritance

Evaluation Paths:

p 1 -- (API' EPJ)

P2 -- (AP2' EP2)

Note that a line of inheritance for a process is a path upwards through a tree of contexts. A

single root can be used to unite these trees, and so we will call them inheritance subtrees. We

have experimented with three kinds of inheritance subtrees:

• Default subtrees contain bindings that can be applicable to all processes. Typically an

evaluation path will include references to a high-precedence default tree and a low-

precedence default tree.

12

• Machine subtrees contain bindings that arc applicable to processes on a particular machine.

• Application subtrees contain bindings that are applicable to processes that are running a

particular application.

We have treated inheritance by copying bindings into new contexts as equivalent with

inheritance by looking up the binding in a series of contexts. In doing so, we have skipped over

one point: What if a bindings value has changed since the process was created? Pure inheritance

suggests that the old value of the binding should be returned, but this limits the utility of the

environment for communication. We therefore make a basic distinction between the semantics of

bindings inherited from the upper two levels and from the lower two levels. For bindings set in

the upper levels, a process inherits the value the binding held when the process was created. For

bindings set in the lower two levels, a process inherits a reference to the binding, rather than the

value, and will see the binding's most recently assigned value. This has the effect of insulating

running processes from changes at the upper levels, while allowing interprocess communication

through bindings set at the lower levels.

3.3. Naming

Thus far, we have considered only the evaluation of bindings specified by simple names.

These are looked up in contexts following the rules of inheritance. To set bindings in one of

these contexts, however, it is necessary to be able to name the context explicitly. Contexts are

given hierarchical names, resembling the file names in a hierarchical file system. An empty root

context, named !PPMEnv, is added to the context hierarchy above the login-session-level roots of

the inheritance subtrees. A complete binding name includes a path from this root to a context and

a simple name within that context. For example, to set a binding for SimpleName in a job context,

we use a name of the form IPPMEnv!IS!CSIJ!SimpleName, where S identifies a inheritance sub

tree, and where CS and J are identifiers for the command session and job.

13

Figure 4 shows an example of the names used for the contexts in two lines of inheritance.

The line on the left is in the high-precedence default subtree. This subtree's root context is called

AllH by convention. The line on the right is in a machine subtree. It's root context's name, by

convention, has the prefix HOST followed by a machine identifier, shown here as the number

123. The other name components are unique identifiers.

The full names of contexts are unwieldy and difficult to construct in programs. For this rea-

son, contexts are often referred to by nicknames. Nicknames are strings, delimited by angle

brackets, inserted into binding names. Any string can be defined in the environment and then

used as a nickname, but certain contexts have standard nicknames. Figure 4 shows nicknames for

the contexts as well as their explicit names. For example, the process context in the high-

precedence default subtree can be referred to as <.PROC>. Context nicknames in the machine

IPPMEnv

IPPMEnv!AllH
<ALL>

IPPMEnv!AllH!CS.l23.1
<CS>

!PPMEnv!AllHICS.l23.1/Job.l23.1
<JOB>

!PPMEnv!HOST.J23
<ALL.HOST>

!PPMEnv!HOST.l231CS.123.1
<CS.HOST>

!PPMEnv!HOST.J23!CS.J23.1/Job.123.1

<JOB .HOST>

A E

!PPMEnv!AIU/!CS.J23.1 /Job./23.~.789 ~PP~!JIOST.J23!CS.l23.1 !Job.J23.1!123. 789

<.!'ROC> @ <.PROCHOST>

Evaluation Path: (<PROC>, <PROC.HOST>)

Figure 4 Names for contexts in the environment naming hierarchy.

14

subtree of the process's local machine have the suffix HOST. Contexts in the low-precedence

default subtree have the suffix LOW, and contexts in an application subtree have the suffix APPL.

By using full names, any process can name (and hence set or a evaluate a binding in) any

context. Most applications, however, evaluate bindings primarily through simple names and set

bindings primarily using nicknames. Nicknames offer a form of relative naming. By using nick

names, all the contexts affecting a process can be referred to by fixed strings. This makes it much

easier for programs to refer to bindings and to express indirections. (One use of this is to use

nicknames to express a process's evaluation path, as shown in Figure 4.) It is more complex than

the relative naming mechanisms used in hierarchical file systems because a process does not have

a single ''current context,'' instead having several.

3.4. Bindings

The PPM Environment holds three types of bindings, actual values. special values. and

indirections. An actual value is a set of uninterpreted bytes. A special value allows a specific

binding to be unset (using the value UNDEFINED) or masked (using the value /LLDEFINED).

When a binding is unset values may be inherited from higher contexts in the same line of inheri

tance. When a binding is masked, values in the same line of inheritance will not be inherited.

This is used primarily for debugging. If a binding holds an indirection, that is a reference to

another binding, this new binding will be evaluated, and its value returned.

Figure 5 shows an example of how these possibilities work. If the value of TIMEOUT is set

to an actual value in the context <.PROC>, that actual value will be seen by Pl. If the special

value UNDEANED is used, the value 20 sec will be inherited from <.JOB>. If ILLDEANED is

used, the value in <.JOB> will be masked and the value 30 sec will be inherited from

<.!OB.HOST>. If <PROC>!T/MEOUT is set to be an indirection through the binding

<PROC.HOST>IT/MEOUT, the latter will be evaluated, and its value, inherited from

<.JOB.HOST> will be returned. Finally, if <PROC>ITIMEOUT is set to an indirection through

15

LONGTIME, this name will be evaluated and its value returned. If <PROC>ITIMEOUT is set to

an indirection, such as @LONGTIME, and a call is made to set the value of <PROC>!TIMEOUT

to the value 45 sec, it is the value of <JOB>ILONGTIME that will change. This is usually, but

not always, what is wanted. Therefore, we also need calls to set and evaluate bindings that treat

special values and indirections the same as actual values.

Actual values are not interpreted by the PPM Environment. This means that the environ-

ment does not use type infonnation in evaluating bindings and that ensuring correct type match-

ing between binding settings and the expectations of their evaluators is left to the applications. In

a network of heterogeneous machines, values may have to be stored in a system independent for-

mat, such as ASCII strings, or a more elaborate external data representation, such as CCITT

<lOB> <lOB.HOST>

TIMEOUT = 20 sec TIMEOUT = 30 sec
LONGTIME = 60 sec

I I
<PROC> <PROCHOST>

TIMEOUT = ???

r

Value of <PROC>ITIMEOUT Value of TIMEOUT for Pl

45 sec 45 sec
UNDEANED 20 sec
ll...LDEANED 30 sec
@<PROC.HOST>!fiMEOUT 30 sec
@WNGTIME 60sec

Figure 5 The values bound to names can be actual values,
special values, or indirections.

16

X.409 (DcSchon [6] presents a useful comparison of this and other data representation standards).

The first time that an environment subtree is accessed, the subtree is initialized. Initial

values for bindings are read from some file or set of files. The files used is dependent upon the

type of information held by the subtree. The current implementation allows default subtrees,

machine subtrees, and application subtrees, each with its own naming conventions for initializa

tion files. The initialization files may contain bindings to be placed in any subtree, not just the

newly accessed one. This may be done to allow the initialization, say, to place in a machine sub

tree an indirection to a value placed in a default subtree.

4. Implementing the PPM Environment

The PPM Environment has been implemented on top of UNIX 4.3BSD as part of PPM, a

set of services and tools for supporting distributed login sessions. Since one of the goals of PPM

was to assist distributed programs in handling machine failure, the PPM Environment Manager

was implemented as a distributed program holding replicated data. This approach ensures that

when a machine fails, the bindings for processes that had been running on that machine can still

be evaluated.

Oients of the PPM Environment Manager make calls to an interface library. The library

routines set and evaluate bindings through a remote procedure call (RPC) to a local server

processes. Setting a binding requires that all of the servers update their copy of the binding

value. Lookups can then be performed entirely locally.

The time taken to perform operations on the environment is dominated by the time taken for

RPCs, which can vary considerably with the system load. Our implementation relied upon UDP

datagrams. The dominant factor here is the rescheduling delay incurred by the process making

RPCs, which will be long in moderately loaded machines. Thus, the time taken for a local RPC

varies from 10 to 30 ms on a lightly to moderately loaded VAX 785 and from 4 to 15 ms on a

VAX 8600. The time taken for an RPC between such machines varies from 12 to 35 ms.

17

The time to evaluate a binding is essentially detennined by the time to perfonn a local RPC.

Setting a binding requires a two-phase protocol where the binding is first locked and then

updated. The local setver acts as coordinator for this protocol. Again, the major cost is the

rescheduling delay that can occur. The calls to the remote participants can be overlapped, how

ever, which minimizes the cost of adding new participants.

The cost of evaluating a binding can be reduced if the binding's value is stored within the

address space of the client process. The PPM Environment Manager interface library includes a

call to request that a specific binding be cached by the client. The library routines manage these

cached values. When a cached binding is updated the local setver process sends a message to the

client. Caching reduces the cost of repeatedly evaluating a binding to essentially the cost of the

call to the library call and the cost of checking for an update message.

The PPM Environment Manager provides operations to set and evaluate bindings nonnally,

that is, respecting indirections and special values, and absolutely, that is treating both indirections

and special values as if they were actual values. The Manager also provides a call that allows a

client to find the most recently assigned value of a binding, without regard to rules of inheritance,

and calls to lock or unlock a binding. The latter calls allow bindings (or groups of bindings) to be

evaluated and reset atomically.

The current implementation of the PPM Environment Manager implements inheritance by

lookup. Contexts are created only as they are needed, that is empty contexts need not be expli

citly created. Contexts at the job and process level are created when bindings are set for at this

level. These contexts are eliminated after a job has tenninated. Thus, it is possible to evaluate

bindings in the context of a process which has tenninated if the job of which it is part has not ter

minated. Job tennination is decided by other components of PPM, and the PPM Environment

Manager is then infonncd. At the command session and login session levels, binding values are

timestamped. Each binding value has a valid time, between the time that it was set and the

18

present or the time that it was reset. A value applies to any process that was created during its

valid time. The time at which each process was created is available from other components of

PPM. Values which are not applicable to any current process can be disposed of.

5. Conclusions

The PPM Environment Manager offers a shared pool of bindings to processes belonging to

a particular user that may be scattered across a number of machines. The name space of the

environment and the semantics of binding evaluation provide a rich structure that allows a wide

variety of information to be passed through the environment without complicated programming.

This environment has been quite important in implementing other portions of PPM, a system

designed to support distributed applications by providing the user with a coherent distributed

login session [13]. We have used the PPM Environment to implement a command interpreter

able to run distributed jobs. The environment is used to hold items such as the default working

directory for each machine, the machine on which to create the next process, the sources and des

tinations of each process's inputs and outputs. The environment is also used in configuring byte

stream l/0 and in implementing a library for message 1/0, which hides the details of addressing

from the application program. We use the environment to hold dependency relations among the

processes of a distributed job. These are evaluated and acted upon by components of PPM when

a process fails, to simplify the handling of failure for the application program.

We hope that future versions of the PPM Environment Manager will integrate access to the

environment with access to a system name server. With larger networks, a greater variety of

resources, and more flexible displays, adaptability to the needs of particular users is of growing

importance, and the diverse mechanisms for passing information should be replaced by a single,

consistent approach. We believe that the flexibility to change bindings seen by individual jobs

and processes is a useful aid to program development, that the environment scoping model is

important in the development of distributed software, and that the use of the environment will

19

encourage the development of more flexible applications programs.

References

1. A. D. Birrell, R. Levin, R. M. Needham and M.D. Schroeder, "Grapevine: An exercise in

distributed computing", Communications of the ACM 25,4 (April1982), 260-274.

2. D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik and F. Zdybel,

"CommonLoops: Merging Lisp and object-oriented programming", Proc. of Object

Oriented Programming Systems, Languages and Applications' 86, October 1986, 17-29.

3. S. R. Bourne, "An introduction to the UNIX shell", in UNIX User's Supplementary

Documents, Computer Systems Research Group, Univerisity of California at Berkeley,

April, 1986.

4. L. F. Cabrera, S. Sechrest and R. Caceres, "The administration of distributed computations

in a networked environment: An interim report", Proc. of the Sixth International

Conference on Distributed Computing Systems, May 1986, 389-397.

5. D. R. Cheriton and T. P. Mann, "Uniform access to distributed name interpretation in the

V-system", The Fourth International Conference on Distributed Computing Systems, May

1984, 290-297.

6. A. L. DeSchon, "A survey of data representation standards", RFC 971, USC lSI, January

1986. .

7. W. Joy, "An introduction to the C shell", in UNIX User's Supplementary Documents,

Computer Systems Research Group, Univcrisity of California at Berkeley, April, 1986.

8. D. Korn, "Introduction to KSH", 1983 Summer USENIX Conference Proceedings, July

1983, 191-202.

9. D. A. Moon, "Object-oriented programming with Flavors", Proc. of Object-Oriented

Programming Systems, Languages and Applications '86, October 1986, 1-8.

10. R. M. Needham and A. J. Herbert, The Cambridge Distributed Computing System,

Addison-Wesley, Reading, Massachusetts, 1982.

11. C. Schaffert, T. Cooper, B. Bullis, M. Killian and C. Wi1pot, "An introduction to

Trellis/Owl", Proc. of Object-Oriented Programming Systems, Languages and

Applications '86, October 1986, 9-16.

12. M. D. Schroeder, A. D. Birrell and R. M. Needham, "Experience with Grapevine: The

growth of a distributed system", ACM Transactions on Computer Systems 2, 1 (February

1984), 3-23.

13. S. Sechrest, "A client-server shell architecture for distributed programming", Technical

Report No. UCB/CSD 88/457, Computer Science Division, University of California at

Berkeley, October 1988.

14. M. R. Thompson, "MACH environment manager", Internal memo of the Department of

Computer Science, Carnegie-Mellon University, February 1987.

